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1 Estimating measurement errors

Lab measurement errors, often characterized by uncertainty in measured values,
play a crucial role in scientific investigations and experimental analyses [1].
The inherent complexity of laboratory processes, equipment limitations, and
unavoidable environmental factors contribute to uncertainties in measurements
(check [2] and [3] and the Reference Material on the course page of Project 1
for more information).

1.1 Types of errors

Systematic errors, characterized by consistent and repeatable deviations from
the true value, can arise from equipment limitations, calibration issues, or envi-
ronmental conditions. Random errors, or statistical errors, occur unpredictably,
impacting the precision of measurements. Fluctuations in experimental condi-
tions or limitations in measurement instruments contribute to random errors.
Multiple measurements and statistical analysis, such as calculating standard
deviation, help mitigate random errors.

Scientists employ various methods to quantify and express these uncertain-
ties, such as error bars, confidence intervals, and standard deviations. Under-
standing and acknowledging measurement uncertainties are essential for accu-
rate data interpretation and effective communication of scientific findings.

1.2 Propagation of errors

When combining measurements in calculations, it is essential to understand how
errors propagate. Consider a quantity y calculated from measured quantities
x1, x2, . . . with a function y = f(x1, x2, . . .).

The propagated error ∆y can be estimated using partial derivatives (check
[1] and [4]). The partial derivative of y with respect to each measured quantity
xi is denoted as ∂y

∂xi
. The total differential of y can be expressed as

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2 + . . . ,

and the uncertainty ∆y can therefore be calculated as
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∆y =
√
(dy)2 =

√(
∂y

∂x1
dx1

)2

+

(
∂y

∂x2
dx2

)2

+ . . .+ 2

(
∂y

∂xi

∂y

∂xj

)
dxidxj + . . .

For random uncorrelated variables, the cross-terms are zero, simplifying the
expression to

∆y =

√√√√∑
i

(
∂y

∂xi
∆xi

)2

=

√(
∂f

∂x1
∆x1

)2

+

(
∂f

∂x2
∆x2

)2

+ . . ..,

where ∆xi is the error or uncertainty in the measured quantity xi.
For example, let Q be a calculated quantity based on measured values x, y,

with uncertainties ∆x, ∆y. The general formula for the uncertainty ∆Q in Q
is given by:

1. For the sum Q = ax + by or difference Q = ax − by (where a, b are
constants) of quantities:

∆Q =
√
(a∆x)2 + (b∆y)2

2. For the product (Q = ax · y) or division (Q = ax
y ) (where a is a constant)

of quantities:

∆Q

Q
=

√(
∆x

x

)2

+

(
∆y

y

)2

1.3 Error analysis in our radial flow experiment

In this experiment, we will be evaluating the Rossby number R0 as a function
of the azimuthal velocity, vθ, the rotation rate of the apparatus Ω, and the
distance from the center of the tank, r, such that

R0 ≡ R0(vθ,Ω, r) =
vθ
2Ωr

. (1)

Each of the quantities appearing in this expression is either measured directly
or calculated from other measured variables during the experiment, and has
some intrinsic uncertainty that we can quantify. For example, the precision in
the measured rotation speed of the tank (∆Ω), the radius of the particle (∆r),
and the estimated azimuthal velocity (∆vθ = ∆(r∆θ

∆t )).
Hence, we can estimate the error in R0 using the propagation of error rule,

to get

∆R0(vθ,Ω, r) =

√(
∂R0

∂vθ
∆vθ +

∂R0

∂Ω
∆Ω+

∂R0

∂r
∆r

)2

.

Note that vθ, r, and Ω are not necessarily independent from one another.
For example, vθ = r∆θ

∆t is a direct function of r. This means that we cannot, in
general, neglect the cross terms, which makes ∆R0 from this equation difficult.
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Special Case: Conservation of Angular Momentum

From conservation of angular momentum, we were able to find a prediction for
R0 as a function of the radius r and the radius of the tank r0,

R0 =
1

2

[(r0
r

)2

− 1

]
. (2)

Unlike r, vθ, and Ω, the variables r and r0 are independent of one another. In
this case, the propagation of error gives

∆R0 =

√(
∂R0

∂r
∆r

)2

+

(
∂R0

∂r0
∆r0

)2

. (3)

An equivalent way to write this is to define r̃ ≡ r/r0, so that

∆R0 =

√(
∂R0

∂r̃
∆r̃

)2

=

∣∣∣∣∂R0

∂r̃

∣∣∣∣∆r̃. (4)

The normalized radius r̃ is a division of two quantities, so it has a relative error
of

∆r̃

r̃
=

√(
∆r0
r0

)2

+

(
∆r

r

)2

. (5)

Plugging this in gives

∆R0 =

∣∣∣∣− 1

r̃3

∣∣∣∣∆r̃ =
1

r̃2

√(
∆r0
r0

)2

+

(
∆r

r

)2

. (6)

Questions

1) How are r and r0 calculated in our experiment?
2) Can you estimate their errors given measured quantities during the experi-
ment?
3) Do you expect any of these errors to become more significant as the particles
approach the middle of the tank, spiraling quickly towards the center?
4) Which errors dominate your estimate of R0?

1.4 Evaluating the fit between theory and experiments

In the previous section, we performed an error analysis on

R0 =
1

2

[(r0
r

)2

− 1

]
. (7)

but this expression assumes that angular momentum of the water (and the
particles) is conserved while swirling towards the middle of the tank. How well
is this prediction reproduced in our collected laboratory data?
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To answer this, we can use the “least squares” method for fitting a set of
experimental data to a mathematical function (check [1] and [5]). In short, the
least squares method is a mathematical approach used in regression analysis
to determine the line or curve that minimizes the sum of squared differences
between observed and predicted values in a given dataset.

To examine our theoretical prediction, we can re-plot our calculated Rossby
number R0, but now as a function of r̃ instead of r (or, alternatively, using a log-
log plot), and apply the least squares method by fitting the data to a straight
line. Denoting x ≡ r̃−2 and plotting R0(x), we can use a simple statistics
software (such as MATLAB, Excel, or other) to find the best linear fit to the
data (check [6] for more information),

y = mx+ b, (8)

with statistical estimations of the slope m and its error ∆m, the intercept b and
its error ∆b, and the coefficient of determination value R2 (with desirable values
close to 1 and larger than at least 0.5 generally, check [7] for more information).

Questions

1) What is the slope, the intercept, and the R2 value of the fit for your collected
data points?
2) What do they tell you about the fit between our idealized theory and the
experiment?
3) Can you think of systematic, random, or measurement errors that could have
affected the experiment results?
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