P1: Vortices in the atmosphere

http://weatherclimatelab.mit.edu/projects/weather-and-extremes/observation-data

jet stream

blizzard

hurricane

tornado

Summary of theory

Atmospheric vortices: balance of forces

Is the jet stream in geostrophic balance?

Use January climatology to verify it

Level: 250, Month: Jan

71 57

43

29 15

1

-12

-26 -40

Uwind - climatology (west to east wind)

2

Jet stream in geostrophic balance ?

$$2\Omega v_{\theta} = g \frac{\partial h}{\partial r}$$

Coriolis Force

Pressure Gradient Force

$$v_{\theta} = \frac{g}{2\Omega} \frac{\partial h}{\partial r} \simeq \frac{g}{2\Omega} \frac{\Delta h}{\Delta r}$$

Put numbers in...

 $\Delta h \cong 1.2 \cdot 10^3 \text{ m}$ $\Delta r \cong 3 \cdot 10^3 \text{ km}$

$$v_{\theta} \cong 30 \ \frac{m}{sec}$$

Why is the jet stream generated?

The Equator-to-pole temperature difference induces a meridional (north-south) pressure gradient, with a **Low** pressure over the **Cold** Pole

The jet stream is in therefore in *geostrophic balance:* the pressure gradient force is balanced by the Coriolis force

At altitude, friction with the Earth lessens and the pressure gradient and the Coriolis forces balance out.

Why is the jet stream strongest at upper levels?

• Because of the N-S temperature difference, pressure gradient force is increasing with height.

Why is the jet stream strongest at upper levels?

- Because of the N-S temperature • difference, pressure gradient force is increasing with height.
- The geostrophic wind is therefore • also increasing with height (reaching a maximum at the tropopause)

Eq

Extratropical weather systems

Figure 4.20 Sea-lavel pressure analysis for 0000 UTC 23 February 2004. Solid lines are isobars labeled in hPa and contoured every 4 hPa. Capital L and H represent centers of sea-level low- and high-pressure systems, respectively. Note the tight pressure gradient around the low and the much weaker pressure gradient around the highs

Figure taken from "Mid-Latitude Atmospheric Dynamics: A First Course", book by Jonathan E. Martin

Why are anticyclones (H) weaker and spatially larger than cyclones (L)?

Balance of forces for cyclones (L) and anticyclones (H)

Balance of forces for cyclones (L):

Subgeostrophic

The cyclonic wind is always weaker than the geostropic wind!

Balance of forces for cyclones (L):

Balance of forces for anticyclones (H):

Supergeostrophic

The anticyclonic wind is always stronger than the geostropic wind!

Balance of forces for anticyclones (H):

Let's check if this simple theory works for real H and L!

Figure 4.20 Sea-lavel pressure analysis for 0000 UTC 23 February 2004. Solid lines are isobars labeled in hPa and contoured every 4 hPa. Capital L and H represent centers of sea-level low- and high-pressure systems, respectively. Note the tight pressure gradient around the low and the much weaker pressure gradient around the highs

Figure from "Mid-Latitude Atmospheric Dynamics: A First Course", book by Jonathan E. Martin

Note: the fact that $v < v_g$ for cyclones and $|v| > |v_g|$ for anticyclones does not mean that anticyclones velocities are larger. This is true only for the same pressure gradient! Note also that-

Let's check if this simple theory works for real H and L!

We will use the Synoptic Laboratory website (Lodo Illari) to plot v, v_a for real atmospheric data.

- Check February 16th 2024, around Washington (WA state) for a nice example.
- Go to <u>http://synoptic.mit.edu/custom-plots/anyscalarwind/</u>
- Set:
- 1. In the "Scaler" field, change "tmpc" to "hght"
- 2. Set the day to "16" instead of today, and year to 2024.
- 3. In the "Wind-skip" option, change to yes (to reduce the number if arrows)
- 4. In the GAREA option, change "usnps" to "WA--".
- \rightarrow This will produce a map with wind barbs and the 500mb geopotential height
- Now repeat, but in the "Wind" option change "observed" to "Geostrophic" •

- Is the actual v smaller or larger than the geostrophic velocity in the L/H region? $R_0 = \frac{v_g}{1} - 1$ cyclones

- Can you estimate the Rossby number? anticyclones

Total wind

Geostrophic wind

Hurricanes-

Next class!

EsGlobe uses a **globa**l dataset:

Winds from the GFS - Global Forecast Model (NCEP)

lat, lon grid with a resolution of $\frac{1}{4}$ of degree = ~ 25km

Not enough resolution to represent well an hurricane, which has a radius of few hundreds km

To study the balance of forces in a hurricane we are using a special dataset: surface wind data from the "**scatterometer**" instrument

See <u>scatterometer</u> instructions

Hurricane flow and the balanced vortex experiment

Streamlines for Bertha 20080711