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Abstract

We describe the theory of Geostrophic Balance, derive key equations and discuss

associated physical balances.1

1 Geostrophic balance

If the flow is such that the Rossby number is small – Ro ¿ 1 – where

Ro =
U

fL
(1)

(here U is a typical horizontal current speed, f is the Coriolis parameter and L is a typical

horizontal scale over which U varies), then the Coriolis force is balanced by the pressure

gradient force in the horizontal component of the momentum equation, which reduces to:

fbz× u+ 1

ρ
∇p = 0 (2)

where bz is a unit vector in the vertical direction.
In situations where (as is always the case) Eq.(2) is only an approximate balance, the

velocity u defined by (2) – involving only the horizontal components of u– is known as the

geostrophic wind (or current). Rewriting Eq.(2), we can define the geostrophic wind (sincebz× bz× u = −u) as
ug =

1

ρf
bz×∇p , (3)

or, writing out its Cartesian components,

ug = − 1
ρf

∂p

∂y
; (4)

vg =
1

ρf

∂p

∂x
.

1
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Figure 1: Schematic of two isobars on a horizontal surface. The magnitude of u increases as the
siobars become closer together.

We see from Eq.(2) that the geostrophic flow is normal to the pressure gradient: i.e. along

isobars (lines of constant pressure) and its speed is proportional to the pressure gradient.

Consider Fig.1, the curved lines show two isobars on which pressure has the constant values

p and p+ δp. Their separation is δs. From Eq.(3), the flow speed is

|ug| = 1

ρf
|∇p| = 1

ρf

δp

δs
.

Since δp is constant along the flow, |ug| ∝ (δs)−1: the flow is strongest where the isobars
are closest together. Since the geostrophic flow cannot cross the isobars, the latter act like

banks of a river, causing the flow to speed up where the river is narrow and slow down where

it is wide.

As shown in Fig.2, the flow is (in the northern hemisphere) anticlockwise (cyclonic)

around a low pressure center, and clockwise (anticyclonic) around a center of high pressure.

(“Cyclonic” means in the same sense as the vertical component of the Earth’s rotation,

and “anticyclonic” the opposite. So, in the southern hemisphere where f < 0, the flow

is clockwise, but still cyclonic, around a low pressure center.) This rule is summarized in

1Notes to accompany 12.307: Weather and Climate Laboratory. For a more detailed description see notes
on 12.003 web page here: http://paoc.mit.edu/labweb/notes.htm
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Figure 2: Geostrophic flow around (left) a low pressure center and (right) a high pressure center.
(Northern hemisphere case, f > 0.) The effect of Coriolis delecting flow ‘to the right’ is balanced by
the horizontal component of the pressure gradient force, −1

ρ
∇p, directed from high to low pressure.

Figure 3:

Buys-Ballot’s law:

If you stand with your back to the wind in the northern

hemisphere, low pressure is on your left.

We now consider pressure coordinate versions of the geostrophic and continuity equations

which allow some simplifications (with regard to density variations) to be made.

1.1 The geostrophic wind in pressure coordinates

In order to apply the geostrophic equations to atmospheric observations and particularly

upper air analyses (see below), we need to express them in terms of height gradients on a

pressure surface, rather than, as in Eq.(4), of pressure gradients at constant height. Consider

Fig.3. The figure depicts a surface of constant height z0, and one of constant height p0, which

intersect at A, where of course pressure is pA = p0 and height is zA = z0. At constant height,
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the gradient of pressure in the x-direction isµ
∂p

∂x

¶
z

=
pC − p0

δx

where δx is the (small) distance between C and A. Now, the gradient of height along the

constant pressure surface is µ
∂z

∂x

¶
p

=
zB − z0
δx

.

Since zC = z0, and pB = p0, we can use the hydrostatic balance equation Eq.(??) to write

pC − p0
zB − z0

=
pC − pB
zB − zC

= −∂p
∂z
= +gρ

Therefore (and invoking a similar result in the y-direction), it follows thatµ
∂p

∂x

¶
z

= gρ

µ
∂z

∂x

¶
p

;µ
∂p

∂y

¶
z

= gρ

µ
∂z

∂y

¶
p

.

Therefore Eq.(3) becomes, in pressure coordinates,

ug =
g

f
bzp ×∇pz , (5)

where bzp is the upward unit vector in pressure coordinates and ∇p denotes the gradient

operator in pressure coordinates. In component form,

(ug, vg) =

µ
−g

f

∂z

∂y
,
g

f

∂z

∂x

¶
. (6)

Note that, like p contours on surfaces of constant z, z contours on constant p are streamlines

of the geostrophic flow. Note that, in pressure coordinates, the geostrophic wind is, as before,

nondivergent if f is taken as constant:

∇ · ug = ∂u

∂x
+

∂v

∂y
= 0 .

Let’s now look at some synoptic charts to see some of these ideas in action.
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Figure 4: 500mb wind and geopotential height field on October 9th 2001. The wind blows
away from the quiver: one full quiver denotes a speed of 5ms−1, one half-quiver a speed of
2.5ms−1. The geopotential height is in meters.

1.2 Highs and Lows; synoptic charts

Fig.4 shows the height of the 500mb surface (in geopotential metres, contoured) plotted with

the observed wind vector (one full quiver represents a wind speed of 5 ms−1). Note how the

wind blows along the isobars and is strongest the closer the isobars are together - see the

schematic diagram in Fig.2. At this level, away from frictional effects at the ground, the

wind is close to geostrophic.
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Figure 5:

1.3 Visualizing geostrophic balance on the sphere

To get a feel for geostrophic balance on the sphere it is very useful to consider a ring of air

moving eastward at speed u relative to the underlying rotating earth.

There is a centrifugal acceleration directed outwards perpendicular to the earth’s axis of

rotation, the vector A sketched in fig(5):

V 2

r
=
(u+ Ωr)2

r
= Ω2r + 2Ωu+

u2

r
(7)

Here V is the ‘absolute’ velocity the fluid has viewed from an observer fixed in space looking

back at the earth. Let’s now consider the terms in turn:

• Ω2r - this is the centrifugal acceleration acting on a particle fixed to the earth. As

discussed above, this acceleration is included in the gravity which is usually measured

and is the reason that the earth is not a perfect sphere.

• 2Ωu+ u2

r
- the additional centrifugal acceleration due to motion relative to the earth.

Note that if u
Ωr

<< 1, we may neglect the term in u2. For the earth Ro =
u
Ωr
∼ 0.02

and so the 2Ωu term dominates. It is directed outward perpendicular to the axis of

rotation and can be resolved: perpendicular to the earth’s surface - vector B in the

diagram - and parallel to the earth’s surface - vector C in the diagram.

Component B changes the weight of the ring slightly - it is very small compared to g,

the acceleration due to gravity, and so unimportant.
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Figure 6:

Component C, parallel to the earth’s surface, is the Coriolis acceleration:

2Ω sinϕ× u

So there is a centrifugal force directed toward the equator because of the motion of

the ring of air relative to the earth. It is this force that balances the pressure gradient

force associated with the sloping isobaric surfaces induced by the pole-equator temperature

gradient.

Let’s postulate a balance between the Coriolis force and the pressure-gradient force di-

rected from equator to pole associated with the tilted isobaric surfaces - see Fig.6.

ρadϕdz| {z }×
mass

2Ω sinϕu| {z }
acceleration

= − ∂p

∂ϕ
dϕdz| {z }

p_grad

Introducing a coordinate y which points northwards on the earth’s surface, dy = adϕ, the

above reduces to:

fu+
1

ρ

∂p

∂y
= 0 (8)

where f = 2Ω sinϕ is the Coriolis parameter.

This is just one component of the geostrophic relation, Eq.(4), between pressure gradient

forces and Coriolis forces.


