
Chapter 10

The wind-driven circulation

In Chapter 9 we saw that the ocean comprises a warm, salty, stratified lens of
fluid, the thermocline, circulating on top of a cold, fresh, relatively well mixed
abyss, as sketched in the schematic, Fig.10.1. The time-mean circulation of
thermocline waters is rapid relative to the rather sluggish circulation of the
abyss.
There are two processes driving the circulation of the ocean.

1. tangential stresses at the ocean’s surface due to the prevailing wind
systems which impart momentum to the ocean – the wind-driven cir-
culation and

2. convection, induced by loss of buoyancy in polar latitude, due to cooling
and/or salt input, causing surface waters to sink to depth, ventilating
the abyss – the thermohaline circulation.

This separation of the circulation into wind-driven and thermohaline com-
ponents is somewhat artificial but provides a useful conceptual simplification.
In this chapter we will be concerned with the circulation of the warm, salty
thermocline waters sketched in Fig.10.1 that are brought in to motion by the
wind. We shall see that the effects of the wind blowing over the ocean is
to induce, through Ekman pumping or suction (see Section 10.2), a pattern
of vertical motion indicated by the arrows on the figure. Pumping down of
buoyant surface water in the subtropics and sucking up of heavier interior
fluid at the pole and the equator, tilts density surfaces, as sketched in Fig.10.1
and evident in Fig.9.7, setting up a thermal wind shear and geostrophic mo-
tion. The presence of jagged topography acts to damp strong mean currents

335



336 CHAPTER 10. THE WIND-DRIVEN CIRCULATION

Figure 10.1: The ocean comprises a warm, salty, stratified lens of fluid, the ther-
mocline, circulating on top of a cold, fresh, relatively well mixed, abyss. The
surface layer, above the horizontal dotted line at a depth of about 100m, is driven
directly by the wind. The thermocline below is brought in to motion through
a pattern of vertical velocity driven by the wind (Ekman pumping and suction)
which induces flow in the ocean beneath.

in the abyss. Vertical shears build up across the tilted thermocline, however,
supporting strong surface currents. The tilting of the thermocline induced
by the collusion of horizontal surface density gradients and vertical motion
induced by the wind, leads to a vast store of available potential energy (re-
call our discussion in Section 8.3.2). We shall see in Section 10.5 that this
potential energy is released by baroclinic instability, leading to an energetic
eddy field, the ocean’s analogue of atmospheric weather systems. Ocean ed-
dies have a horizontal scale of typically 100 km and, as discussed in Chapter
9, are often much stronger than the mean flow, leading to a highly turbu-
lent, chaotic flow – see Fig.9.24. The mean pattern of currents mapped in
Figs.9.14 to 9.16 only emerges after averaging over many years.

10.1 The wind stress and Ekman layers

One cannot escape noticing the similarity between the pattern of surface cur-
rents in the ocean and that of the low-level winds in the atmosphere. Com-
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pare, for example, the pattern of surface elevation of the ocean in Fig.9.19
with the pattern of surface atmospheric pressure, Fig.7.27. Winds, through
turbulent transfer of momentum across the atmospheric boundary layer, ex-
ert a stress on the ocean’s surface which drives ocean currents.
The surface wind stress can, to a useful degree of accuracy, be related

to the wind velocity through the following relationship (known as a ‘bulk
formula’): ¡

τwindx , τwindy
¢
= ρaircDu10 (ua, va) (10.1)

where τwindx, τwindy are, respectively, the zonal and meridional stress com-
ponents, cD is a bulk transfer coefficient for momentum (typically cD =
1.5 × 10−3), ρair is the density of air at the surface and u10 is the speed of
the wind at a height of 10m. The observed annual average of the stress,
computed from Eq.(10.1), is shown in Fig.10.2.
Although there is some similarity between the pattern of surface ocean

currents and the pattern of surface wind stress – compare Fig.10.2 with
Fig.9.13 – the way in which the ocean responds to this wind stress is fasci-
nating and rather subtle, as we are about to see.

10.1.1 Balance of forces and transport in the Ekman
layer

If the Rossby number is small, we can neglect the D
Dt
terms in the horizontal

momentum Eq.(9.7), reducing them to a three way balance between the
Coriolis force, the horizontal pressure gradient and the applied wind-stress
forcing. This is just Eq.(7.25) in which F is interpreted as an applied body
force due to the action of the wind on the ocean. First we need to express F
in terms of the wind stress, τwind.
Consider Fig.10.3 showing a stress which varies with depth, acting on a

body of ocean. The stress component of interest here, τx(z), is the x−component
of force acting at depth z, per unit horizontal area on the layer beneath. Note
that the units of τ are Nm−2. The slab of thickness δz at level z is sub-
jected to a force per unit horizontal area τx(z + δz) at its upper surface,
but also subjects the layers beneath it to a force τx(z) per unit horizontal
area. Therefore the net force per unit horizontal area felt by the layer is
τx(z+ δz)− τx(z). Since the slab has thickness δz, it has volume δz per unit
horizontal area, and if the slab has uniform density ρref , it has mass ρrefδz
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Figure 10.2: Annual mean wind stress on the ocean. A contour of 1 represents
a wind-stress of magnitude 0.1 Nm−2. Stresses reach values of 0.1 to 0.2 Nm−2

under the middle-latitude westerlies, and are particularly strong in the southern
hemisphere. The arrow is a vector of length 0.1 Nm−2. Note that the stress
vectors circulate around the high and low pressure centers shown in Fig.7.27, as
one would expect if the surface wind, on which the stress depends, has a strong
geostrophic component.

Figure 10.3: The stress applied to an elemental slab of fluid of depth δz is imagined
to diminish with depth.
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Figure 10.4: The stress at the sea surface, τ(0) = τwind, the wind stress, dimin-
ishes to zero at a depth z = −δ. The layer directly affected by the stress is known
as the Ekman layer.

per unit horizontal area. Therefore the force per unit mass, Fx, felt by the
slab is

Fx =
force per unit area
mass per unit area

=
τx(z + δz)− τx(z)

ρrefδz
=

1

ρref

∂τx
∂z

,

for small slab thickness. We can obtain a similar relationship for Fy and
hence write:

F = 1

ρref

∂τ

∂z
(10.2)

for the horizontal stress vector τ = (τx, τ y). Hence our momentum equation
for the steady circulation becomes Eq.(7.25) with F defined above which, for
convenience, we write out in component form here:

−fv + 1

ρref

∂p

∂x
=

1

ρref

∂τ x

∂z
; fu+

1

ρref

∂p

∂y
=

1

ρref

∂τ y

∂z
. (10.3)

Eq.(10.3) describes the balance of forces in the directly wind-driven cir-
culation, but it does not yet tell us what that circulation is. The stress at
the surface is known – it is the wind stress, τwind, plotted in Fig.10.2 –
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but we do not know the vertical distribution of stress beneath the surface.
The wind stress will be communicated downward by turbulent, wind-stirred
motions confined to the near-surface layers of the ocean. The direct influence
of wind-forcing decays with depth (rather rapidly – in a few tens of meters
or so, depending on wind strength) so that by the time a depth z = −δ has
been reached, the stress has vanished, τ = 0, as sketched in Fig.10.4. As
discussed in Chapter 7, this is the ‘Ekman layer’.
Conveniently, we can bypass the need to know the detailed vertical distri-

bution of τ by focusing on the transport properties of the layer by integrating
vertically across it. As in Section 7.4, we split the flow into geostrophic and
ageostrophic parts. With F given by Eq.(10.2), the ageostrophic component
of Eq.(7.25) is

fbz× uag = 1

ρref

∂τ

∂z
. (10.4)

Multiplying Eq.(10.4) by ρ
ref
and integrating across the layer from the surface

where τ = τwind, to a depth z = −δ, where τ = 0 – see Fig.10.4 – we
obtain:

fbz×MEk = τ (z = 0) = τwind

where

MEk =

0Z
−δ

ρrefuagdz

is the lateral mass transport over the layer. Noting that bz × (bz×MEk) =
−MEk we may rearrange the above to give:

MEk =
τwind × bz

f
. (10.5)

Since bz is a unit vector pointing vertically upwards, we see that the mass
transport of the Ekman layer is exactly to the right of the surface wind (in
the northern hemisphere). Eq.(10.5) determines MEk, which depends only
on τwind and f . But Eq.(10.5) does not predict typical velocities or boundary
layer depths which depend on the details of the turbulent boundary layer.
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Figure 10.5: The mass transport of the Ekman layer is directed to the right
of the wind in the Northern Hemisphere – see Eq.(10.5). Theory suggests that
horizontal currrents, uag, within the Ekman layer spiral with depth as shown.

A more complete analysis (carried out by Ekman, 19051) shows that the
horizontal velocity vectors within the layer trace out a spiral, as shown in
Fig.10.5. Typically δ ' 10 − 100m. So the direct effects of the wind are
confined to the very surface of the ocean.

1 Vagn Walfrid Ekman (1874-1954) a Swedish physical oceanographer, is
remembered for his studies of wind-driven ocean currents. The role of Coriolis forces in
the wind-driven layers of the ocean was first suggested by the great Norwegian explorer
Fridtjof Nansen who observed that sea ice generally drifted to the right of the wind and
proposed that this was a consequence of the Coriolis force. He suggested the problem
to Ekman – at the time a student of Vilhelm Bjerknes – who, remarkably, worked out
the mathematics behind what are now known as Ekman spirals, in one evening of intense
activity.
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10.1.2 Ekman pumping and suction and GFD Lab XII

Imagine a wind-stress blowing over the northern hemisphere ocean with the
general anticyclonic pattern sketched in Fig.10.6(left). We have just seen that
the Ekman transport is directed to the right of the wind and hence there will
be a mass flux directed inwards (as marked by the broad open arrows in the
figure), leading to convergence in to the center. Since the mass flux across
the sea surface is zero (neglecting evaporation and precipitation which, as
discussed in Chapter 11, are typically ±1my−1), water cannot accumulate in
the steady state and so it must be driven down into the interior. Conversely,
the cyclonic pattern of wind-stress sketched in Fig.10.6(right) will result in
a mass flux directed outwards from the center and therefore water will be
drawn up from below.
If the wind-stress pattern varies in space (or, more precisely, as we shall

see, if the wind-stress has some ‘curl’) it will therefore result in vertical
motion across the base of the Ekman layer. The flow within the Ekman
layer is convergent in anticyclonic flow and divergent in cyclonic flow, as
sketched in Fig.10.6. The convergent flow drives downward vertical motion
(called Ekman pumping); the divergent flow drives upward vertical motion
from beneath (called Ekman suction). We will see that it is this pattern of
vertical motion from the base of surface Ekman layers that brings the interior
of the ocean in to motion. But first let us study Ekman pumping and suction
in isolation, in a simple laboratory experiment.

GFD Lab XII: Ekman pumping and suction

The mechanism by which the wind drives ocean circulation through the ac-
tion of Ekman layers can be studied in a simple laboratory experiment in
which the cyclonic and anticyclonic stress patterns sketched in Fig.10.6 are
created by driving a disc around on the surface of a rotating tank of water –
see Fig.10.7 and legend. We apply a stress by rotating a disc at the surface
of a tank of water which is itself rotating, as depicted in Fig.10.7. If Ω > 0,
the stress imparted to the fluid below by the rotating disc will induce an
ageostrophic flow to the right of the stress (Eq.(10.5)): outward if the disc
is rotating cyclonically relative to the rotating table

¡
ω
Ω
> 0

¢
, inward if the

disc is rotating anticyclonically
¡
ω
Ω
< 0

¢
, as illustrated in Fig.10.6. The Ek-

man layers and patterns of upwelling and downwelling can be made visible
through the use of dye crystals.
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Figure 10.6: The Ekman transport is directed prependicular to the applied stress
(to the right if Ω > 0, to the left if Ω < 0) driving (left) convergent flow if the
stress is anticyclonic and (right) divergent flow if the stress is cyclonic. (The case
Ω > 0 – the northern hemisphere – is shown.)
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Figure 10.7: We rotate a disc at rate ω on the surface of a cylindrical tank of
water (in fact the disc is just submerged beneath the surface). The tank of water
and the disc driving it are then rotated at rate Ω using a turntable: 10 rpm works
well. We experiment with disc rotations of both signs, ω = ±5 rpm. Low values
of |ω| are used to minimize the generation of shearing instabilities at the edge
of the disc. The apparatus is left for about 20 minutes to come to equilibrium.
Once equilibrium is reached, dye crystals are dropped in to the water to trace the
motions. The whole system is viewed from above in the rotating frame; a mirror
can be used to capture a side view, as shown in the photograph on the right.

Figure 10.8: Schematic of the ageostrophic flow driven by the cyclonic rotation
of a surface disc relative to a homogeneous fluid that is itself rotating cyclonically
below. Note that the flow in the bottom Ekman layer is in the same sense as
Fig.7.23, top panel, from GFDLab X. The flow in the top Ekman layer is divergent.
If the disc is rotated anticyclonically, the sense of circulation is reversed.
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Figure 10.9: (Top) The anticlockwise rotation of the disc at the surface induces
upwelling in the fluid beneath (Ekman suction) as can be clearly seen from the
‘dome’ of dyed fluid being drawn up from below. (Bottom) We see the experiment
from the top and, via the mirror, from the side (and slightly below). Now, some-
time later, the dye has been drawn up in to a column reaching right up to the disk
and is being expelled outward at the top. The white arrows indicate the general
direction of flow. The yellow line marks the rotating disk.
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With Ω, ω > 0 (i.e. disk rotating cyclonically and faster than the table)
the column of fluid is brought into cyclonic circulation and rubs against the
bottom of the tank. The flow in the bottom Ekman layer is then just as it
was for the cyclonic vortex studied in GFD Lab X (Fig.7.23, top panel) and
is directed inwards at the bottom as sketched in Fig.10.8. Convergence in
the bottom Ekman layer thus induces upwelling, drawing fluid up toward the
rotating disc at the top, where it diverges in the Ekman layer just under the
disk). This is clearly evident in the photographs of upwelling fluid shown in
Fig.10.9. The Ekman layer directly under the disc drives fluid outwards to
the periphery, drawing fluid up from below. This process is known as ‘Ekman
suction’.
If the disc is rotated anticyclonically, convergence of fluid in the Ekman

layer underneath the disc drives fluid downward into the interior of the fluid
in a process known as ‘Ekman pumping’ (in this case the sign of all the
arrows in Fig.10.8 is reversed).
Before going on to discuss how Ekman pumping and suction manifest

themselves on the large scale in the ocean, it should be noted that in this ex-
periment the Ekman layers are laminar (non-turbulent) and controlled by the
viscosity of water.2 In the ocean the momentum of the wind is carried down
in to the interior by turbulent motions rather than by molecular processes.
Nevertheless, the key result of Ekman theory, Eq.(10.5), still applies. We
now go on to estimate typical Ekman pumping rates in the ocean.

10.1.3 Ekman pumping and suction induced by large-
scale wind patterns

Fig.10.10 shows a schematic of the midlatitude westerlies (eastward wind
stress) and the tropical easterlies (westward stress) blowing over the ocean,
as suggested by Fig.10.2. Because the Ekman transport is ‘to the right of
the wind’ in the northern hemisphere, there is convergence and downward

2Theory tells us (not derived here, but see Hide and Titman; 1967) that:

wEk =
ω

2

µ
ν

2Ω+ ω

¶ 1
2

where ν = 10−6m2 s−1 is the kinematic viscosity of water (see Table 9.3). In the exper-
iment of Fig.10.7 typically Ω = 1 rad s−1 (that is 10 rpm) and ω = 0.5 rad s−1, and so
wEk ' 1.5× 10−4ms−1. Thus in Fig.10.9, fluid is sucked up at a rate of order 9 cm every
10 minutes or so.
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Figure 10.10: A schematic showing midlatitude westerlies (eastward wind stress)
and tropical easterlies (westward stress) blowing over the ocean. Because the
Ekman transport is ‘to the right of the wind’ in the northern hemisphere, there is
convergence and downward Ekman pumping in to the interior of the ocean. Note
that the sea surface is high in regions of convergence.

Ekman pumping in the subtropics. This Ekman layer convergence also ex-
plains why the sea-surface is higher in the subtropics than in subpolar re-
gions (cf. Fig.9.19): the water is ‘piled up’ by the wind through the action of
counter-posed Ekman layers, as sketched in Fig.10.10. So the interior of the
subtropical ocean ‘feels’ the wind stress indirectly, through Ekman-induced
downwelling. It is this downwelling that, for example, causes the σ = 26.5
surface plotted in Fig.9.8 to bow down in the subtropics. Over the sub-
polar oceans, by contrast, where the westward stress acting on the ocean
diminishes in strength moving northwards (see Fig.10.2), Ekman suction is
induced, drawing fluid from the interior upward into the Ekman layer (as in
GFD Lab XII, just described). Hence isopycnals are drawn up to the surface
around latitudes of 60◦N, S. This general pattern of Ekman pumping/suction
imposed on the interior ocean is represented by the vertical arrows in the
schematic Fig.10.1.
We can obtain a simple expression for the pattern and magnitude of the

Ekman pumping/suction field in terms of the applied wind-stress as follows.
Integrating the continuity equation, Eq.(6.11), across the Ekman layer, as-
suming that geostrophic flow is non-divergent (but see footnote in Section
10.2.1):

∇h · uag +
∂w

∂z
= 0, (10.6)
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and noting w = 0 at the sea surface, then the divergence of the Ekman layer
transport results in a vertical velocity at the bottom of the Ekman layer
which has magnitude, using Eq.(10.5):

wEk =
1

ρref
∇h ·MEk (10.7)

=
1

ρref
bz ·∇×µτwind

f

¶
=

1

ρref

µ
∂

∂x

τwindy
f
− ∂

∂y

τwindx
f

¶
(10.8)

(see Appendix 13.2.2, III). The Ekman pumping velocity defined in Eq.(10.7)

depends on the curl of
³
τwind
f

´
. Note, however, that typically τwind varies

much more than f and so the pattern of wEk is largely set by variations in
τwind. We can estimate the magnitude of wEk as follows. Fig.10.2 shows
that τwind changes from + 0.1Nm−2 to − 0.1Nm−2 over 20◦ of latitude,
or 2000 km. Thus, Eq.(10.7) suggests: wEk ≈ 1

103 kgm−3 ×
0.2Nm−2

10−4 s−1×2×106m =
32my−1. It is interesting to compare this with the annual-mean precipitation
rate over the globe of about 1my−1 (this quantity is plotted in Fig.11.6). We
see that the wind, through the action of Ekman layers, achieves a vertical
volume flux which is some 30− 50 times larger than a typical annual-mean
precipitation rate!
Fig.10.11 shows the global pattern of wEk computed from the surface

stress distribution shown in Fig.10.2, using Eq.(10.7). First of all, note the
white band along the equator where the calculation was not attempted be-
cause f −→ 0 there. In fact, however, the equatorial strip is a region of
upwelling because the trade winds on either side of the equator drive fluid
away from the equator in the surface Ekman layer, and so demand a supply of
fluid from below (as will be seen in Section 12.2). Away from the equator we
observe downwelling in the subtropics and upwelling in subpolar regions with
typical magnitudes of 50my−1, pushing down and pulling up the isopycnals
in Fig.9.7. It takes about 8 y to pump water down from the surface to 400m,
a typical thermocline depth (cf. Fig.9.8) indicative of the timescale operating
in the thermocline. Note that the zero Ekman pumping contours in Fig.10.11
separate the ocean into geographical domains which will be central to our
understanding of the pattern of ocean gyres seen in Figs.9.14 – 9.16 and
large-scale property distributions3. It is these broad domains, demarcated

3The pattern of Ekman pumping imposed on the ocean by the wind, Fig.10.11, has a
profound influence on the distribution of dynamically important tracers (such as T , S) the
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Figure 10.11: The global pattern of Ekman vertical velocity (my−1) computed
using Eq.(10.7) from the annual mean wind-stress pattern shown in Fig.10.2. Mo-
tion is upward in the green areas, downward in the brown areas. wEk is not
computed over the white strip along the equator because f −→ 0 there. The
thick line is the zero contour. Computed from Trenberth et al (1989) data. The
broad regions of upwelling and downwelling delineated here are used to separate
the ocean in to different dynamical regimes, as indicated by the colors in Fig.9.13.

by zero wind-stress curl lines, that are color-coded in Fig.9.13: subpolar re-
gions (blue) are generally subjected to upwelling, subtropical regions (yellow)
to downwelling and tropical regions (red) to upwelling.

What, then, is the response of the interior ocean to this pattern of up-
welling and downwelling imposed from above?

focus of attention here, but also on biologically important properties such as nutrients.
Subpolar gyres, for example, are replete in nutrients because of upwelling of nutrient-
rich waters from below and so are regions of high biological productivity. Conversely,
subtropical gyres are relative deserts, biologically-speaking, because downwelling driven
by the wind pushes the nutrients away from the sunlit upper layer where photosynthesis
can take place. Thus Ekman pumping has both physical and biogeochemical consequences
for the ocean.
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10.2 Response of the interior ocean to Ek-
man pumping

10.2.1 Interior balances

Beneath the Ekman layer the flow is in geostrophic balance. How does this
geostrophic flow respond to the imposed pattern of vertical velocity from the
Ekman layer shown in Fig.10.11? To study the effect of w on the interior
ocean we make use of the continuity equation, Eq.(6.11), applied to the
interior flow, assumed to be geostrophic. Taking the horizontal divergence of
the geostrophic flow we find:

∇h · ug =
∂

∂x

µ
− 1

ρref f

∂p

∂y

¶
+

∂

∂y

µ
1

ρref f

∂p

∂x

¶
= −β

f
vg (10.9)

where we have remembered that f varies with y and, noting that dy = adϕ,

β =
df

dy
=
1

a

df

dϕ
=
2Ω

a
cosϕ (10.10)

is the meridional gradient in the Coriolis parameter, Eq.(6.42). The variation
of f with latitude is known as the ‘β−effect’.
We see, then, that because f varies with latitude the geostrophic flow is

horizontally divergent. Hitherto (in Eq.(10.6), for example) we have assumed
that ∇h ·ug = 0. However, on the planetary scales being considered here, we
can no longer ignore variations in f and the resulting horizontal divergence
of geostrophic flow is associated with vertical stretching of water columns
because4:

∇h · ug +
∂w

∂z
= 0. (10.11)

Combining Eqs.(10.9 and 10.11) we obtain the very useful expression :

βvg = f
∂w

∂z
(10.12)

4Eq.(10.11) tells us that ∇h ·ug ∼ wEk
H where H is the vertical scale of the thermocline,

and so is δ
H smaller than ∇h · uag = wEk

δ in Eq.(10.6) where δ is the Ekman layer depth.
Because δ

H . 0.1, we are thus justified in neglecting ∇h · ug in comparison with ∇h · uag
in the computation of wEk, as was assumed in deriving Eq.(10.7).
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which relates horizontal and vertical currents.
If vertical velocities in the abyss are much smaller than surface Ekman

pumping velocities, then Eq.(10.12) tells us that ocean currents will have a
southward component in regions where wEk < 0 and northward where wEk >
0. This is indeed observed in the interior regions of ocean gyres: consider
Figs.9.14 and 9.15, for example, in the light of Eq.(10.12) and Fig.10.11. Does
Eq.(10.12) make any quantitative sense? Putting in numbers: f = 10−4 s−1,
wEk = 30 m y−1, H the depth of the thermocline ∼ 1 km, we find that v = 1
cm s−1, typical of the gentle currents observed in the interior of the ocean
on the large-scales (note that Fig.9.22top shows surface currents, whereas
our estimate here is an average current over the depth of the thermocline).
This is the basic mechanical drive of the ocean circulation: the pattern of
Ekman pumping imposed on the ocean from above induces meridional motion
through Eq.(10.12).

10.2.2 Wind-driven gyres and western boundary cur-
rents

We have seen that Ekman pumping, downward in to the interior of the ocean,
must drive an equatorward flow in the subtropical latitude belt between the
midlatitude westerlies and tropical easterlies. Although this flow is indeed
observed (see the equatorward interior flow over the subtropics in Figs.9.14
and 9.15), we have not yet explained the remainder of the circulation. If
we take a very simple view of the geometry of the midlatitude ocean basins
(Fig.10.12), then the equatorward flow induced by Ekman pumping could be
“fed” at its poleward side by eastward or westward flow, and in turn feed
westward or eastward flow at the equatorward edge; either would be consis-
tent with Eq.(10.12), which only dictates the N-S component of the current.
However, the general sense of circulation must mirror the anticyclonic sense
of the driving wind stress in Fig.10.12. Hence the required poleward return
flow must occur on the western margin, as sketched in Fig.(10.12).5 In the
resulting intense western boundary current, our assumptions of geostrophy

5Indeed, to sustain the circulation against frictional dissipation at the bottom and side
boundaries, the wind stress must do work on the ocean. Since the rate of doing work
is proportional to the product of wind stress and current velocity (u · F > 0) these two
quantities must, on average, be in phase in order for the work done to be positive. This
is the case if the sense of circulation is as depicted in Fig.10.12, whereas the work done
would be negative if the circulation were returned to the east.
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Figure 10.12: Schematic diagram showing the sense of the wind-driven circulation
in the interior and western boundary regions of subtropical gyres.

and/or of negligible friction break down (as will be discussed in more detail
in Section 11.3.3) and therefore Eq.(10.12) is not applicable. This current is
the counterpart in our simple model of the Gulf Stream or the Kuroshio, and
other western boundary currents.
The preference for western as opposed to eastern boundary currents is

strikingly evident in the surface drifter observations shown in Fig.10.13,
which displays the same data as in Fig.9.15 but zooms in at high resolu-
tion on the surface circulation in the North Atlantic. We clearly observe the
northward flowing Gulf Stream and the southward flowing Labrador Current
hugging the western boundary. Here mean currents can exceed 40 cm s−1.
Note how the path of the Gulf Stream and its interior extension, the North
Atlantic Current, tends to follow the zero Ekman pumping line in Fig.10.11,
which marks the boundary between the subtropical and subpolar gyres and
the region of enhanced temperature gradients.

10.2.3 Taylor-Proudman on the sphere

Before going on in Section 10.3 to a fuller discussion of the implications of
Eq.(10.12) on ocean circulation, we now discuss what it means physically.
Eq.(10.12) can be simply understood in terms of the attendant rotational
and geometrical constraints on the fluid motion, i.e. the Taylor-Proudman
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Figure 10.13: (Top) Time-mean zonal velocity and (Bottom) the meridional ve-
locity in cm s−1 computed from surface drifters averaged over a 0.25◦× 0.25◦ grid
over the North Atlantic (Data courtesy of Maximenko and Niiler, 2003).
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Figure 10.14: In Section 10.2.3 we consider the possibility that a Taylor column
subjected to Ekman pumping at its top might conserve mass by expanding its
girth, as sketched on the left. We argue that such a scenario is not physically
plausible. Instead the column maintains its cross-sectional area and increases its
length, as sketched on the right.

theorem on the sphere. This can be seen as follows.
Let us first consider rotational constraints on the possible motion. If the

ocean were homogeneous then, as described in Section 7.2, the steady, invis-
cid, low-Rossby-number flow of such a fluid must obey the Taylor-Proudman
theorem, Eq.(7.14). Thus, the velocity vector cannot vary in the direction
parallel to the rotation vector and flow must be organized into columns par-
allel to Ω, an expression of gyroscopic rigidity, as illustrated in GFD Lab
VII, Section 7.2.1 and sketched in Fig.7.8.
Now, consider what happens to such a column of fluid subjected to Ek-

man pumping at its top. According to Eq.(7.14), we might think that mass
continuity would be satisfied by uniform flow sideways out of the column, as
sketched in Fig.10.14.
This satisfies the constraint that the flow be independent of height, but

cannot be sustained in a steady flow. Why not? If the flow is axisymmetric
about the circular column, it will conserve its angular momentum, Ωr2+vθr,
where vθ is the azimuthal component of flow around the column, and r is
the column radius. The column must continuously expand as fluid is being
pumped into it at its top; thus r must increase and so vθ must change by
an amount δvθ ' −2Ωδr (this, of course, is just Eq.(7.22)) as the column
increases its girth by an amount δr. Thus vθ must become increasingly neg-
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Figure 10.15: (a) An illustration of Taylor-Proudman on a rotating sphere. We
consider a spherical shell of homogeneous fluid of constant thickness h. Taylor
columns line up parallel to Ω with length d. The latitude is ϕ and the colatitude
θ. (b) A Taylor column in a wedge. If the wedge narrows, or fluid is pumped down
from the top at rate wEk, the Taylor column moves sideways to the thicker end
of the wedge. This is just how one flicks a lemon seed. The downward motion
between finger and thumb generates lateral (shooting) motion as the seed slips
sideways. Modified from a discussion by Rhines (1993).

ative as r increases. This is obviously inconsistent with our assumption of
steady state and not physically reasonable.

So, what else can happen? Let’s now introduce the geometrical con-
straint that our Taylor columns must move in a spherical shell, as sketched
in Fig.10.15a. (We have obviously exaggerated the depth h of the fluid layer
in the figure – recall Fig.1.1!) We see that the columns have greatest length,
in the direction parallel to Ω, near the equator. Therefore, if supplied by fluid
from above by systematic Ekman pumping, a fluid column can expand in vol-
ume without expanding its girth (which we have seen is not allowed in steady
state), by moving systematically equatorward in the spherical shell and hence
increasing its length in the manner illustrated in Fig.10.15b. The column will
move equatorward at just the rate required to ensure that the ‘gap’ created
between it and the spherical shell is at all times filled by the pumping down
of water from the surface; this, in essence, is how the wind, through the
Ekman layers, drives the circulation in the interior of the ocean. The rate
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Figure 10.16: The area A0 = A
sinϕ

is the cross-sectional area of a Taylor column,
A, projected on to the surface of the sphere, where ϕ is the latitude.

at which fluid is pumped down from the Ekman layer must be equal to the
rate of change of the volume of the Taylor columns beneath.
Let’s think about this process in more detail following Fig.10.15. The

Taylor columns are aligned parallel to the rotation axis; hence, since cos θ =
sinϕ = h

d
where θ is colatitude and ϕ latitude (see Fig.10.15a), their length

is given by:

d =
h

sinϕ
(10.13)

if the shell is thin (this is inaccurate within less than 1% of the equator). If
the change in the volume of the Taylor column is ADd

Dt
, where (see Fig.10.16)

A is its cross-sectional area measured perpendicular to Ω (which, as discussed
above, does not change in time) and d is its length parallel to Ω then

A0wEk =
A

sinϕ
wEk =

A

sinϕ

µ
−Dh

Dt

¶
= −ADd

Dt

since A0 = A
sinϕ

is the area of the Taylor column projected on to the surface
of the sphere over which fluid is being pumped down from the Ekman layer
at rate wEk. Note that the minus sign ensures that if wEk < 0 (pumping
down in to the ocean), then Dd

Dt
> 0: i.e., following the Taylor Column along

its length increases.
Rewriting,
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wEk

sinϕ
= −Dd

Dt
= −Dϕ

Dt

dd

dϕ
=

Dϕ

Dt

µ
h cosϕ

sin2 ϕ

¶
=

v

a

µ
h cosϕ

sin2 ϕ

¶
(10.14)

where Eq.(10.13) has been used and v = aDϕ
Dt
is the meridional velocity of

the column. Multiplying both sides by 2Ω and rearranging, Eq.(10.14) may
be written in the form:

βv = f
wEk

h
(10.15)

where f is given by Eq.(6.42) and β by Eq.(10.10). Note that, setting ∂w
∂z
=

wEk
h
, we have arrived at a version of Eq.(10.12).
The simple mechanism sketched in Fig.10.15b is the basic drive of the

wind-driven circulation; the gentle vertical motion induced by the prevail-
ing winds, wEk, is amplified by a large geometrical factor,

f
βh
= a

h
tanϕ '

radius of Earth
depth of ocean ∼ 1000, to create horizontal currents with speeds that are 1000
times that of Ekman pumping rates, i.e., 1 cm s−1 compared to 30my−1.
Thus we see that the stiffness imparted to the fluid by rotation results in
strong lateral motion as the Taylor Columns are squashed and stretched in
the spherical shell.
There are two useful mechanical analogies:

1. ‘pip’ flicking: a lemon seed shoots out sideways on being squashed
between finger and thumb – see Fig.10.15b.

2. a child’s spinning top: the ‘pitch’ of the thread on the spin axis results
in horizontal motion when the axis is pushed down – see Fig.10.17.
The tighter the pitch the more horizontal motion one creates (note,
however, that in practice friction prevents use of a very tight pitch).

10.2.4 GFD Lab XIII: Wind-driven ocean gyres

The above discussion motivates a laboratory demonstration of the wind-
driven circulation. We need the following three essential ingredients: (i) geo-
metrical and (ii) rotational constraints and (iii) a representation of Ekman
pumping. The apparatus, shown in Fig.10.18, consists of a rotating Plexiglas
disc (to represent the action of the wind as in GFD Lab XII) on the surface
of a anticlockwise-rotating square tank of water with a sloping bottom (to
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Figure 10.17: The mechanism of wind-driven ocean circulation can be likened to
that of a child’s spinning top. The tight pitch of the screw thread (analogous to
rotational rigidity) translates weak vertical motion (Ekman pumping of order 30
my−1) in to rapid horizontal swirling motion (ocean gyres circulating at speeds
of cm s−1).

represent, as we shall see, spherical geometry). The stress applied by the ro-
tating lid to the underlying water is analogous to the wind stress at the ocean
surface. With clockwise differential rotation of the disc (Fig.10.6, left), fluid
is drawn inwards in the Ekman layer just under the lid and pumped down-
wards in to the interior, mimicking the pumping down of water in subtropical
gyres by the action of the winds, as sketched in Fig.10.10. The varying depth
of the tank mimics the variation in the depth of the spherical shell measured
in the direction parallel to the rotation vector on the sphere (Fig.10.15). The
shallow end of the tank is thus analogous to the poleward flank of the ocean
basin (the ‘N’ in Figs.10.18 and 10.19) and the deep end to the tropics.
On introduction of dye (through bore holes in the Plexiglas disc) to help

visualize the flow we observe a clockwise (anticyclonic) gyre with interior
flow moving towards the deep end of the tank (‘equatorward’) as charted in
Fig.10.19. This flow (except near the lid and the bottom) will be indepen-
dent of depth because the interior flow obeys the Taylor-Proudman theorem.
Consistent with the discussion see Section 10.2.2, a strong “poleward” re-
turn flow forms at the “western” boundary; this is the tank’s equivalent of
the Gulf Stream in the Atlantic or the Kuroshio in the Pacific.
In a manner directly analogous to that described in Section 10.2.3, we can
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Figure 10.18: A tank with a false sloping bottom is filled with water so that the
water depth varies between about 5 cm at the shallow end and 15 cm at the deep
end. The slope of the bottom represents the spherical “beta-effect”: the shallow
end of the tank corresponds to high latitudes. (The labels N/S correspond to
Ω > 0, appropriate to the northern hemisphere). A disc is rotated very slowly at
the surface of the water in a clockwise sense – a rate of 1 rpm works well. To
minimize irregularities at the surface, the disc can be submerged so that its upper
surface is a millimeter or so underneath the surface. The whole apparatus is then
rotated in an anticlockwise sense on a turntable at a speed of Ω = 10 rpm. It is
left to settle down for 20 minutes or so. Holes bored in the rotating disc can be
used to inject dye and visualize the circulation beneath, as was done in Fig.10.19.
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Figure 10.19: A time sequence (every 7 min) showing the evolution of red dye
injected through a hole in the rotating disc. The label ‘N’ marks the shallow end of
the tank. The plume of dye drifts “equatorward” in the ‘Sverdrup’ interior where
Eq.(10.15) holds. In the bottom picture we see the dye being returned ploeward in
a western boundary current, the laboratory model’s analogue of the Gulf Stream or
the Kuroshio. Equatorward flow is broad and gentle, poleward flow much swifter
and confined to a western boundary current.
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relate the strength of the north-south flow to the Ekman pumping from under
the disc and the slope of the bottom, as follows (compare with Eq.(10.14)):

wEk = −
Dd

Dt
= −Dy

Dt

∂d

dy
= −v∂d

dy
(10.16)

where d is the depth of the water in the tank and where y here represents the
upslope (“poleward”) coordinate and v is the velocity in that direction. In our
experiment, wEk ' 5× 10−5ms−1 (as estimated for our Ekman experiment,
GFD Lab XII above) and the bottom has a slope ∂d

dy
= −0.2. Thus v should

reach speeds of 2.5 × 10−4 ms−1 or 15 cm in 10 minutes or so directed
equatorward (toward the deep end). This is broadly in accord with observed
flow speeds.
The above relation cannot hold, however, over the whole domain because

it implies that the flow is southward everywhere, draining fluid from the
northern end of the tank. As can be seen in Fig.10.19, the water returns in
a poleward flowing western boundary current, just as sketched in Fig.10.12.

10.3 The depth-integrated circulation: Sver-
drup theory

One might wonder about the relevance of the homogeneous model of ocean
circulation discussed above to the real ocean. The ocean is not homogeneous
and it circulates in basins with complicated geometry – it is far from the
homogeneous spherical shell of fluid sketched in Fig.10.15. And yet, as we will
now see, the depth-integrated circulation of the ocean is indeed governed by
essentially the same dynamics as a homogeneous fluid in a shallow spherical
shell.
We begin by, just as in Section 10.2.1, eliminating (by cross-differentiation)

the pressure gradient terms between the horizontal momentum balances,
Eq.(10.3), to obtain, using continuity, Eq.(6.11):

βv = f
∂w

∂z
+

1

ρref

∂

∂z

µ
∂τ y
∂x
− ∂τ x

∂y

¶
which is Eq.(10.12) modified by wind-stress curl terms. Now, integrating up
from the bottom of the ocean at z = −D (where we imagine w = 0 and
τ = 0) to the very top, where w is again zero but τ = τwind, we obtain:
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βV =
1

ρref

µ
∂τwindy
∂x

− ∂τwindx
∂y

¶
=

1

ρref
bz ·∇× τwind (10.17)

where

V =

Z 0

−D
v dz (10.18)

is the depth integrated meridional transport. Eq.(10.17) is the result we seek
– it is known as the ‘Sverdrup relation’6 and relates the vertically-integrated
meridional flow to the curl of the wind stress. The key assumption that must
be satisfied for its validity – in addition to Ro << 1 – is that flow in the
deep ocean must be sufficiently weak (well supported by observation) so that
both frictional stress on the ocean bottom and vertical motion are negligibly
small.
Note the close connection between Eq.(10.17) and Eq.(10.15), (see Q3 at

the end of the chapter, for a detailed look), when we realize that hv = V is
the transport and fwek is (if f were constant) the wind-curl divided by ρref
(cf. Eq.(10.7)). Thus, despite the apparent restrictions in the assumptions
made in deriving Eq.(10.15), it turns out to have wide applicability. More-
over, when combined with the preference for western, as opposed to eastern,
boundary currents, it gives us deep physical insights in to the mechanism
underlying the wind-driven circulation.

6 Harald Ulrik Sverdrup (1888-1957), a Norwegian who began his
career studying meteorology with Vilhelm Bjerknes in Oslo, was appointed director of
Scripps Oceanographic Institution in 1936. His 1947 paper "Wind-driven currents in a
baroclinic ocean", which showed the link between meridional currents and the curl of the
wind stress, began the modern era of dynamical oceanography and initiated large-scale
modeling of ocean circulation.
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10.3.1 Rationalization of position, sense of circulation
and volume transport of ocean gyres

The Sverdrup relation, Eq.(10.17), is one of the cornerstones of dynamical
oceanography. We can use it to derive a simple expression for the transport
of ocean gyres as follows. The depth integrated flow must be horizontally
non-divergent and so we can introduce a streamfunction, Ψ, to map it out,
[just as a streamfunction was used to represent the geostrophic flow in Section
7.1] where

U = −∂Ψ
∂y
; V =

∂Ψ

∂x
. (10.19)

Combining Eqs.(10.17) and (10.19) and integrating westwards from the east-
ern boundary where we set Ψ = 0 (no transport through the eastern bound-
ary7) we obtain:

Ψ(x, y) =
1

ρrefβ

xZ
eastern bdy

bz ·∇× τwind dx (10.20)

This simple formula is remarkably successful – it predicts the sense of
circulation and volume transport of all the major ocean gyres, rationalizing
the patterns of ocean currents shown in Figs.9.14, 9.15 and 9.16 in terms
of the pattern of imposed winds. Note, in particular, that Eq.(10.17) tells
us that V = 0 along the lines of zero wind-stress curl, the thick black lines
in Fig.10.11. Where bz.∇ × τwind < 0, V < 0 and visa-versa, allowing us
to define subpolar and subtropical gyres etc and rationalizing the pattern
of zonal jets observed in the tropical oceans, as sketched in the schematic
diagram in Fig.10.20.
Fig.10.21 shows Ψ in the Pacific sector and should be compared with

Fig.10.20. The curl of the annual-mean surface stress shown in Fig.10.2
was computed and integrated westwards from the eastern boundary to yield

7Since U = 0 at the eastern boundary, Eq.(10.19) tells us that Ψ is a constant there.
Eq.(10.19) allows us to add any arbitrary constant to Ψ, so we are free to set Ψ = 0 at the
boundary. Note, however, that we cannot simultaneously satisfy a vanishing normal flow
condition through the western and eastern boundary using Eq.(10.17) because it involves
only one derivative in x. As discussed in Section 11.3.3, dissipative processes must be
invoked at the western boundary to obtain a complete solution. In Fig.10.21, the western
boundary is sketched in as a feature required by mass continuity.
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Figure 10.20: Schematic diagram showing the classification of ocean gyres and
major ocean current systems and their relation to the prevailing zonal winds. The
pattern of Ekman transport and regions of upwelling and downwelling are also
marked.

Ψ from Eq.(10.20) as a function of horizontal position. The units are in
106m3 s−1: it is convenient to use 1 million cubic meters per second as a unit
of volume transport which is known as the ‘Sverdrup’ (or Sv, after Harald
Sverdrup). To put things in perspective, the flow of the Amazon river as it
runs in to the sea is about 0.2 Sv: thus, transport of the subtropical gyre of
the north Pacific is about 50 Sv or 250 times that of the Amazon, the biggest
river on Earth!

One interesting rationalization provided by Sverdrup theory is that it ac-
counts for the countercurrents (marked Equatorial Counter Current (ECC)
in Fig.9.13) observed in the tropical oceans discussed in Chapter 9: i.e. cur-
rents that flow in a direction opposite to the prevailing winds. As can be
seen in Fig.10.20 and 10.21, Sverdrup balance implies meridional flow away
from the Doldrums in the interior with a return flow in a western boundary
current. Convergence of these boundary currents drives an eastward flow
just north of the equator, even though the winds are blowing toward the
west here. This is just as observed in surface drifter data – see Fig.9.14 and
the zonal-average surface currents across the Pacific plotted in the right-most
panel in Fig.10.21.

The transport of the western boundary current must be equal and oppo-
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Figure 10.21: (left) The zonal-average of the zonal wind-stress over the Pacific
ocean. (middle) The Sverdrup transport streamfunction (in Sv = 106m3 s−1)
obtained by evaluation of Eq.(10.20) using climatological wind-stresses, Fig.10.2.
Note that no account has been made of islands – we have just integrated right
through them. The transport of the western boundary currents (marked by the
N ↔ S arrows) can be read off from Ψwest_bdy. (right) The zonal-average zonal
current over the Pacific obtained from surface drifter data shown in Fig.9.14. Key
features corresponding to Fig.9.13 are indicated.
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site to that in the interior. The total interior transport is

Int. Trans. =

western bdyZ
eastern bdy

V dx =
1

ρrefβ

western bdyZ
eastern bdy

bz ·∇× τwind dx = Ψwest_bdy,

(10.21)
and so the balancing boundary current transport, Ψwest_bdy, can be read
off Fig.10.21 – it is the value of Ψ at the western margin of the Pacific.
However, it is instructive to obtain an explicit expression for the transport as
follows. Let us assume that the wind-stress only has an east-west component
(a useful approximation to reality, cf. Fig.10.2) so τwind = (τwindx, 0) with

τwindx = −τx cos
³
π(y−ytrade)

Ly

´
where Ly = ywest − ytrade is a measure of the

meridional scale over which the zonal wind changes from the westerly wind
belt to the trades, as marked in Fig.10.21 (left most panel). Then, sincebz ·∇× τwind = −∂τwindx

∂y
, Eq.(10.21) yields:

Transport =
πτx
ρrefβ

Lx

Ly
sin

µ
π (y − ytrade)

Ly

¶
where Lx is the east-west extent of the basin, assumed constant. Inserting
numbers in to the above expression typical of the Pacific – τx = 0.1Nm

−2,
β = 1.98×10−11m−1 s−1, Ly = 3000 km; Lx = 8000 km–we find a maximum
transport of the subtropical gyre of 44Sv, roughly in accord with the detailed
calculation given in Fig.10.21. The transport of the subtropical gyre of the
Atlantic ocean is somewhat smaller, about 30Sv, largely on account of the
much reduced east-west scale of the basin.
The interior Sverdrup transport of the gyre is thus returned meridionally

in a narrow western boundary currents as marked in Fig.10.21 in the Pacific.
In the Atlantic, it is clear from Fig.10.13 that the horizontal extent of the Gulf
Stream is about 100 km. The hydrographic section of Fig.9.21(top) shows
that the vertical extent of the region of strong lateral temperature gradients
in the Gulf Stream is about 1 km. If a current of these dimensions is to
have a transport of 30Sv then it must have a mean speed of some 30 cm s−1,
roughly in accord with, but somewhat smaller than, direct measurement8.

8The discrepancy is due to the fact that the transport of the Gulf Stream can consid-
erably exceed the prediction based on Sverdrup theory because a portion of the fluid that
flows in it recirculates in closed loops that do not extend far into the interior of the ocean.
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Before going on, it should be mentioned that there is one major current
system in Fig.9.13 which cannot be addressed in the context of Sverdrup
theory – the Antarctic Circumpolar Current. The ACC is not in Sver-
drup balance because there are no meridional barriers that allow water to be
‘propped up’ between them, hence supporting a zonal pressure gradient and
meridional motion. Dynamically, the ACC is thought to have much in com-
mon with the atmospheric jet stream discussed in Chapter 8; eddy processes
are central to its dynamics.

10.4 Effects of stratification and topography

Our analysis of the wind-driven circulation in Section 10.2 assumed the ocean
to have constant density, whereas (see, e.g. Fig.9.7) the density of the ocean
varies horizontally and with depth. In fact, the variation of density with
depth helps us out of a conceptual difficulty with our physical interpretation
in terms of the Taylor-Proudman theorem on the sphere presented in Section
10.2.3. We described how the Taylor columns of fluid must lengthen in the
subtropical gyres, in order to accommodate Ekman pumping from above;
where there is no Ekman pumping, they must maintain constant length.
But the bottom of the ocean is far from flat. In the Atlantic Ocean, for
example, there is a mid-ocean ridge that runs almost the whole length of the
ocean rising about 2 km above the ocean bottom (see Fig.9.1). If the ocean
were really homogeneous, water columns simply could not cross this ridge:
there would be an enormous, elongated, stagnant “Taylor column” above
it. And yet we have seen that homogeneous theory accounts qualitatively
for the observed circulation, including the observation that, for example, the
Atlantic subtropical gyre does indeed involve water flowing over the ridge.
How does this happen?
In most regions the mean circulation, in fact, does not extend all the way

to the bottom because, as discussed in Section 9.3.2, the interior stratification
of the ocean largely cancels out surface pressure gradients. The thermal wind
relation tells us that there can be no vertical shear in the flow of a homoge-
neous fluid since there are no horizontal density gradients. In the presence of
density gradients the constraint of vertical coherence is weakened. Consider
Fig.10.22. We suppose for simplicity that the ocean has two layers of different
density ρ1, ρ2 (with ρ1 > ρ2, of course). The density difference produces a
stable interface (somewhat like an atmospheric inversion described in Section
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Figure 10.22: Upper layer Taylor column in a two layer idealization of the ocean
moving over topography, such as the mid-Atlantic ridge confined to the lower layer.

4.4) which effectively decouples the two layers. Thus, Taylor columns in the
upper layer, driven by Ekman pumping/suction from the surface, “feel” the
interface rather than the ocean bottom. As long as the interface is above
the topography, they will be uninfluenced by its presence. Thus, the density
stratification “buffers” the flow from control by bottom topography. If we
look at the density stratification in the real ocean (Fig.9.7), we see that most
of the density stratification is found in the main thermocline, within a few
hundred meters of the surface. Thus, the mean wind-driven circulation is
largely confined to these upper layers.

10.4.1 Taylor-Proudman in a layered ocean

If we suppose that the ocean is made up of many layers of fluid with slightly
differing densities, ∆ρ = ρ1 − ρ2 etc, then we can imagine miniature ‘Taylor
Columns’ within each homogeneous layer – and because each layer is homo-
geneous, T-P applies. Let’s suppose that each Taylor column has a length
d, measured parallel to the axis of rotation within each layer, as sketched in
Fig.10.23. An interior column will try and maintain its length. Thus d is
constant, as will be the quantity

2Ω

d
= constant.

which, using Eq.(10.13), can be written:
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Figure 10.23: Miniature T-P columns in a layered fluid – the layers increase in
density going downwards with ρ1 > ρ2.

f

h
= constant (10.22)

where f is the Coriolis parameter, Eq.(6.42), and h is the thickness of the
layer in the direction of gravity measured in the vertical, as sketched in
Fig.10.23.
If we focus on one particular layer then, away from the direct influence of

Ekman pumping, f
h
will be conserved following that column of fluid around

the ocean. What do the f
h
contours look like in the ocean? Some are plot-

ted in Fig.10.24 for chosen density surfaces in the Pacific. In fact what is
actually plotted is

³
− f

ρref

∂σ
∂z

´
, a ‘continuous’ version of f

h
,9 where σ is the

potential density. On the σ = 26.5 surface in the North Pacific, for example,
which is everywhere rather shallow (see Fig.9.8) the f

h
contours sweep around

9If h is the thickness of the layer across which the density changes by ∆σ, then multi-
plying f

h by
∆σ
ρref

we arrive at:

f

h
× ∆σ

ρref
−→ f

ρref

∂σ

∂z

as h and ∆σ become small.
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Figure 10.24: The quantity
³
− f

ρref

∂σ
∂z

´
where σ is the potential density on a

shallow density surface in the Pacific (left; σ = 26.5; the depth of this surface is
plotted in Fig.9.8) and on a deeper density surface (right; σ = 27.5). Note that
∂σ
∂z
<0 because the ocean is stably stratified and so

³
− f

ρref

∂σ
∂z

´
is positive in the

Northern Hemisphere and negative in the Southern Hemisphere.
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and turn back on themselves. Variations in h dominate over f allowing the
strong circulatory flow of the gyre to persist within the thermocline without
violation of Taylor-Proudman. On the σ = 27.5 surface, much deeper in the
water column (see Fig.9.7), f

h
contours are more zonal and they intersect the

coast. On these deeper surfaces, variations in f are much more important
than variations in h. Since interior fluid columns conserve their f

h
, there can

be little flow deep down because the columns would run in to the coast. So
the deep ocean interior is, in the mean, largely quiescent. However, as we
shall see in Section 11.3 and 11.4, a weak abyssal circulation does exist fed
by deep western boundary currents driven by convective sources at the poles.
This is particularly true in the Atlantic (see, e.g., Fig.11.24).

10.5 Baroclinic instability in the ocean

In our discussion of the general circulation of the ocean in Chapter 9 it was
emphasized that the mean circulation emerges only after long time averages.
Instantaneously the flow is highly turbulent – see, e.g., Figs.9.19 and 9.22
and the numerical simulation shown in Fig.9.24. The sloping isopycnals
evident in Fig.9.7 suggest that there is available potential energy (APE) in
the ocean’s thermocline. Indeed, following the analysis of Section 8.3.2, the

ratio of APE to kinetic energy in the flow is, from Eq.(8.11), of order
³

L
Lρ

´2
.

In the ocean the deformation radius, Eq.(7.23), has a value of Lρ =
NH
f
'

5×10−3 s−1×103m
10−4 s−1 = 50 km and so

³
L
Lρ

´2
∼
¡
1000 km
50 km

¢2
= 400 assuming that the

mean flow changes over scales of 1000 km. Thus the potential energy stored
up in the sloping density surfaces of the main thermocline represents a vast
reservoir available to power the motion. This energy is tapped by baroclinic
instability which fills the ocean with small-scale energetic eddies that often
mask the mean flow. We can estimate expected eddy length scales and
time scales using the arguments developed in Section 8.2.2 – see Eqs:(8.3)
and (8.4). A deformation radius of 50 km yields eddy length scales of order
100 km. Growth rates are Teddy ∼ Lρ

U
= 50 km

10 cms−1 = 5 × 105 s, a week or
so, significantly slower than that of atmospheric weather patterns. Eddy
lifetimes in the ocean are considerably longer than those of their atmospheric
counterparts; weeks and months rather than the few days of a typical weather
system.
The mechanism by which APE is built up in the ocean is very differ-
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ent from the atmosphere and, as we now describe, involves the collusion of
mechanical (wind) and thermodynamic processes. In our discussion of the
atmospheric general circulation in Section 8.3, we described how the net ra-
diative imbalance led to warming in the tropics, cooling over the pole and
hence the equator-to-pole tilt of θ surfaces and a store of available poten-
tial energy which can power the eddy field. In contrast, horizontal density
gradients in the interior of the ocean and their associated store of APE are
produced mechanically, by the same processes that drive the wind-driven
currents, as illustrated in Fig.10.25. In the anticyclonic gyre, on the equa-
torward flank of the Gulf Stream, for example, Ekman pumping depresses
isopycnals and isotherms by pumping light, warm water downward; poleward
of the Gulf Stream, where the curl of the wind stress is cyclonic and there
is a cyclonic gyre, Ekman suction lifts up the isopycnals and isotherms, as
we saw in Fig.10.11. Thus, a horizontal density and temperature contrast is
established across the current. In middle latitudes, then, the oceans have a
thermal structure that is somewhat similar to that of the atmosphere, albeit
maintained by a very different mechanism. In particular, the isopycnals slope
poleward/upward – as sketched in Fig.10.25 – just as do θ surfaces in the
atmosphere. Along with horizontal density gradients there is a reservoir of
available potential energy which, through the agency of baroclinic instability,
can be released into kinetic energy in the form of eddies, just as in GFD Lab
XI10. Thus, oceanic eddies are analogs of midlatitude atmospheric eddies and
have many similar properties. It is less clear, however, just how important
oceanic eddies are in the “big picture” of the ocean circulation. They are cer-
tainly less crucial to effecting poleward heat transport than their atmospheric
counterparts. This (as discussed in Chapter 11) is because the wind-driven
and thermohaline circulations are quite capable of efficient poleward heat
transport even in the absence of eddies. This contrasts with the atmosphere
where, in middle latitudes, the zonal flow that would exist in the absence
of eddies cannot transport heat, or anything else, in the N-S direction. In
this context, the crucial difference between ocean and atmosphere is the E-W
confinement of the oceans by continents, permitting western boundary cur-
rents and meridional transport. Note, however, that the ACC is not blocked
by coasts and the mean flow is west-east: this is one place in the ocean where

10This statement refers to the midlatitude eddies evident in the height variance maps,
Fig.9.19(bottom). The near-equatorial eddies evident in the surface current variance maps,
Fig.9.22(bottom) are produced by another mechanism.
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Figure 10.25: A schematic of the mechanism by which a large-scale sub-surface
horizontal density gradient is maintained in the middle-latitude ocean. Ekman
suction draws cold, dense fluid up to the surface in subpolar regions; Ekman
pumping pushes warm, light fluid down in the subtropics. The resulting horizontal
density gradient supports a thermal wind shear. Its baroclinic instability spawns
an energetic eddy field which tends to flatten out the horizontal gradients.

eddies are known to play a central role in meridional property transport.

10.6 Further reading

Hartmann (1994) briefly reviews aspects of wind-driven ocean circulation
theory and describes key observations. A (much) more detailed theoretical
discussion can be found in Gill (1982), Rhines (1993), Pedlosky (1996) or
Vallis (2006).
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10.7 Problems

1. Consider the “Ekman layer” experiment, GFD Lab XII, Section 10.1.2.
Assume the lid rotates cyclonically with respect to the turntable, as
sketched in Fig.10.8. In addition to the Ekman layer at the base, there
is a second layer at the lid. In this top Ekman layer, the effect of friction
is to drive the flow, rather than to slow it down as at the base. Draw
a schematic diagram showing the balance of forces in the top Ekman
layer and use it to deduce the sense of the radial component of the flow.
Contrast this with the bottom Ekman layer.

2. Fig.10.11 shows the pattern and magnitude of Ekman pumping acting
on the ocean. Estimate how long it would take a particle of fluid to
move a vertical distance of 1 km if it had a speed wEk. If properties are
diffused vertically at a rate k = 10−5m2 s−1 (typical of the main ther-
mocline), compare this to the implied diffusive time-scale. Comment.

3. Use the results of Ekman theory to show that when one adds the merid-
ional volume transport in the Ekman layer – given by Eq.(10.5) – to
the meridional transport in the geostrophic interior – obtained from
Eq.(10.12) – one obtains the Sverdrup transport, Eq.(10.17):

1

ρref
MEky +

−δZ
−D

vg dz = Sverdrup transport.

4. Consider the Atlantic Ocean to be a rectangular basin, centered on
35◦N, of longitudinal width Lx = 5000 km and latitudinal width Ly =
3000 km.

The ocean is subjected to a zonal wind stress of the form

τx(y) = −τ s cos
µ
πy

Ly

¶
; (10.23)

τ y(y) = 0 ;

where τ s = 0.1Nm−2. Assume a constant value of β = df/dy appro-
priate to 35◦N, and that the ocean has uniform density 1000 kg m−3.
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(a) From the Sverdrup relation, Eq.(10.17), determine the magnitude
and spatial distribution of the depth-integrated meridional flow
velocity in the interior of the ocean.

(b) Using the depth-integrated continuity equation, and assuming no
flow at the eastern boundary of the ocean, determine the magni-
tude and spatial distribution of the depth-integrated zonal flow in
the interior.

(c) If the return flow at the western boundary is confined to a width
of 100 km, determine the depth-integrated flow in this boundary
current.

(d) If the flow is confined to the top 500m of the ocean (and is uniform
with depth in this layer), determine the northward components of
flow velocity in the interior, and in the western boundary current.

(e) Compute and sketch the pattern of Ekman pumping, Eq.(10.7),
implied by the idealized wind pattern, Eq.(10.23).

5. From your answer to Question 4, determine the net volume flux at 35◦N
(the volume of water crossing this latitude in units of Sverdrups: Sv
= 106m3 s−1).

(a) for the entire ocean excluding the western boundary current

(b) for the western boundary current only.

(c) Assume again that the flow is confined to the top 500m of the
ocean. Determine the volume of the top 500m of the ocean and,
by dividing this number by the volume flux you calculated in part
a., come up with a time scale. Discuss what this time scale means.

(d) Assume now that the water in the western boundary current has
a mean temperature of 20 ◦C, while the rest of the ocean has a
mean temperature of 5 ◦C. Show that Hocean, the net flux of heat
across 35◦N, is

Hocean = ρrefcpV ∆T ,

where V is the volume flux you calculated in part (c), and ∆T
is the temperature difference between water in the ocean interior
and in the western boundary current. Recall that Fig.5.6 shows
that the Earth’s energy balance requires a poleward heat flux of
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around 5 × 1015W. Calculate and discuss what contribution the
Atlantic Ocean makes to this flux.

6. Describe how the design of the laboratory experiment sketched in Fig.10.18
captures the essential mechanism behind the wind-driven ocean circu-
lation. By comparing Eq.(10.16) with Eq.(10.12), show that the slope
of the bottom of the laboratory tank plays the role of the β−effect: i.e.
bottom slope←→ 1

tanϕ
h
a
where h is the depth of the ocean and a is the

radius of the earth.

7. Imagine that the Earth was spinning in the opposite direction to the
present.

(a) What would you expect the pattern of surface winds to look like,
and why (read again Chapter 8)?

(b) on what side (east or west) of the ocean basins would you expect
to find boundary currents in the ocean, and why?
If you live in the southern hemisphere perhaps you are not scratch-
ing your head.

8. Use Sverdrup theory and the idea that only western boundary currents
are allowed, to sketch the pattern of ocean currents you would expect
to observe in the basin sketched below in which there is an island. As-
sume a wind pattern of the form sketched in the diagram.



10.7. PROBLEMS 377

9. Fig.5.5 shows the observed net radiation at the top of the atmosphere as
a function of latitude. Taking this as a starting point, describe the chain
of dynamical processes that leads to the existence of anticyclonic gyres
in the upper subtropical oceans. Be sure to discuss the key physical
mechanisms and constraints involved in each step.
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